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Abstract

A method is developed to predict the vibration

response of a composite panel and the resulting far-

�eld acoustic radiation due to acoustic excitation. The

acoustic excitation is assumed to consist of obliquely

incident plane waves. The panel is modeled by a �nite

element analysis and the radiated �eld is predicted us-

ing Rayleigh's integral. The approach can easily in-

clude other e�ects such as shape memory alloy (SMA)

�ber reinforcement, large de
ection thermal postbuck-

ling, and non-symmetric SMA distribution or lamina-

tion. Transmission loss predictions for the case of an

aluminum panel excited by a harmonic acoustic pres-

sure are shown to compare very well with a classical

analysis. Results for a composite panel with and with-

out shape memory alloy reinforcement are also pre-

sented. The preliminary results demonstrate that the

transmission loss can be signi�cantly increased with

shape memory alloy reinforcement. The mechanisms

for further transmission loss improvement are identi-

�ed and discussed.
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Introduction

Interior or cabin noise is one important issue in

the development and design of advanced subsonic and

supersonic aircraft. Conventional aircraft typically

employ passive treatments, such as constrained layer

damping and acoustic absorption materials, to reduce

the structural response and resulting acoustic levels

in the aircraft interior. These techniques require sig-

ni�cant addition of mass and only attenuate relatively

high frequency noise transmitted through the fuselage.

Improved reduction in the transmitted noise at the

lower frequencies is required for advanced subsonic air-

craft. Reductions will also be imperative, along with

the need for improved fatigue resistance without sig-

ni�cant mass addition, for proposed supersonic trans-

ports, where the excitation levels will be high due to

engine noise and turbulent boundary layer 
uctuating

pressures.

Although structural acoustic coupling is in gen-

eral very important in the study of noise transmission

through an aircraft fuselage, analysis of noise trans-

mission through a panel supported in an in�nite rigid

ba�e (separating two semi{in�nite acoustic domains)

can be useful for studies involving active/adaptive ma-

terials, complex loading, etc. Transmission of noise

through conventional ba�ed panels has been studied

extensively1. More recent work has been aimed at de-

veloping active and/or adaptive methods of controlling

the structural acoustic response of panels to reduce

the transmitted noise2. These methods have focused

on using piezoelectric materials, and to a lesser extent

shape memory alloys, to control the structural acoustic

response of panels subject to harmonic acoustic exci-

tation.

Turner et al.3 developed a �nite element formu-

lation to study the response of shape memory alloy

hybrid composite panels due to thermal and acoustic

loads. A �nite element approach was used to allow for
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the SMA material nonlinearity, thermal expansion ef-

fects, geometric nonlinearities due to thermal buckling,

and complicated geometries and boundary conditions.

The purpose of the present work is to develop

an approach for analyzing the structural acoustic re-

sponse of panels due to obliquely{incident plane-wave

acoustic excitation of general temporal nature, with

the intent for subsequent studies involving SMA hy-

brid composite panels. The method is validated

through comparison with a classical approach for har-

monic excitation1. Results are also presented for com-

posite panels with and without shape memory alloy

reinforcement.

Shape Memory Alloy Hybrid Composites

Shape memory alloys exhibit a characteristic

phase transformation from martensite to austenite,

initiating at the austenite start temperature Ts and

asymptotically ending at the austenite �nish tempera-

ture Tf . A shape memory alloy in the low temperature

martensitic condition (T < Ts), when plastically de-

formed and the external stresses removed, will regain

its original (memory) shape when heated. For exam-

ple, strains of typically six to eight percent can be com-

pletely recovered by heating the nickel-titanium alloys

(Nitinol) above the austenite �nish temperature. The

transformation temperatures can be altered by chang-

ing the composition of the alloy. In addition, when

Nitinol is heated, the Young's modulus increases three

to four times and the yielding strength also increases

approximately ten times4|7.

The materials, referred to in this study as SMA

�ber-reinforced hybrid composites, are conventional

advanced composite materials (such as graphite-epoxy)

that contain embedded SMA �bers having the same di-

rection as the graphite �bers. The memory e�ect of

the SMA �bers may be put to use by applying an ini-

tial elongation to them during fabrication of the lam-

inate. Thus, once the laminate is heated above Ts,

the SMA �bers will try to recover the initial strain

and induce tensile inplane forces in the laminate. The

overall sti�ness of the hybrid composite panel will be

increased due to: 1) the increase of the Young's mod-

ulus of the SMA �bers by a factor of three or four,

and 2) the internal tensile inplane forces induced in

the panel from the recovery of initial strains of the

SMA �bers. Therefore, the root-mean-square (RMS)

maximum de
ection due to acoustic pressure loading,

will be reduced at elevated temperatures as compared

to composite panels without embedded SMA �bers.

Shape memory alloys have been applied as ac-

tuators for active control of buckling of beams8 and

shape control of beams9. It is also being studied for

use in active vibration control of beams10,11 and large

space structures12. Active vibration control of 
exible

linkage mechanisms using SMA �ber-reinforced com-

posites has been investigated by Venkatesh et al.13.

Acoustic transmission and radiation control through

the use of SMA �bers in a hybrid composite was pre-

sented by Liang et al.14 and Anders et al.15.

Finite Element Formulation

The �nite element equations governing the re-

sponse of a composite panel, with shape memory alloy

wire reinforcement and subject to thermal and acous-

tic loads, have the form3
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[M ]
n
�W
o
+
�
[K] + [K�

� ]� [KN�T ] +
1

2
[N1]

+
1

3
[N2]

�
fWg = fP (t)g+ fP�Tg � fP �

�g
(2)

where [M ] and [K] are the system mass and sti�-

ness matrices; [K�

�
] and [KN�T ] are the geometric

sti�ness matrices due to the SMA recovery stress ��r
(or fN�

�g) and thermal inplane force vector fN�T g,
respectively; [N1] and [N2] are the �rst and second
order nonlinear sti�ness matrices which depend lin-

early and quadratically upon displacement fWg, re-
spectively; fP (t)g is the acoustic excitation load vec-

tor, fP�Tg is the thermal load vector, and fP �

�g is

the SMA recovery force vector. The subscripts b

and m denote bending and membrane components,
respectively; and the subscripts B; Nm and NB

indicate that the corresponding sti�ness matrix is

due to the laminate sti�ness [B], membrane forces

fNmg(= [A]f�omg) and fNBg(= [B]f�g), respectively.
Detailed derivations of the equations of motion and
expressions for the element matrices and load vectors

are referred to Locke16,17.

Consider a rectangular composite panel supported

in an in�nite rigid ba�e, subjected to an incident

acoustic pressure on one side and allowed to radiate to
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a semi-in�nite acoustic �eld on the other. The acoustic
excitation load vector in equation 2 has the form

fP (t)g =

�
Pb(t)

Pm(t)

�
(3)

with

fPb(t)ge =

Z
Ae

p(�; �; t)fFw(�; �)g dAe (4)

and

fPm(t)g = f0g (5)

where the Fw are the out-of-plane interpolation func-

tions, (�; �) are the coordinates in the plane of the

plate, and the subscript e indicates an element quan-

tity. The element contributions from equation 4 are

assembled to form fPb(t)g for the system. In general,
the pressure loading on the panel consists of the in-

cident pressure, the re
ected pressure, and the trans-

mitted pressure:

p(�; �; t) = pi(�; �; t) + pr(�; �; t)� pt(�; �; t) (6)

However, p(�; �; t) can be written in terms of the

blocked pressure and the radiated pressure, as sug-

gested by Roussos1. The blocked pressure is that pres-

sure on the incident side when the panel is consid-

ered rigid and the radiated pressure is that due to
panel motion. The acoustic radiation problem can

be solved separately from the forced response of the

panel by assuming that the radiated pressure is neg-

ligible compared to the blocked pressure. Thus, the

load vector fPb(t)g is due to the blocked pressure
(p(�; �; t) = pb(�; �; t) = 2 pi(�; �; t)) and the trans-

mitted pressure (pressure radiated to the free �eld)

can be determined from the resulting panel motion,

without the need for a fully coupled analysis.

Three di�erent types of analyses are required to

determine the response of SMA hybrid composite pan-

els to an acoustic pressure at elevated temperatures.
They are: (1) thermal buckling analysis, (2) thermal

postbuckling analysis, and (3) vibration analysis of 
at

or thermally buckled panels. The governing equations

for the linear dynamic response of such a panel, as-

suming that the stable static con�guration has been

determined, are given by3

[M ]
n
�W
o
+
�
�K
�
fWg = fP (t)g (7)

where
�
�K
�
is the sti�ness matrix for the 
at or buckled

panel. The natural frequencies !r and mode shapes
f�rg of vibration are obtained from the eigenvalue

problem

!2r [M ]f�rg =
�
�K
�
f�rg (8)

A set of uncoupled modal equations with reduced de-
grees of freedom can thus be obtained from equation

7 as

dIcf�qg+ d2�r!rcf _qg+ d!2rcfqg = ff(t)g (9)

where r = 1; 2; . . . ;m is the number of modes retained,

the delimiters dc indicate a diagonal matrix, and dIc
is the identity matrix, indicating a mass normalized

modal matrix. In equations 9, a modal damping term
has been included where �r is the modal damping ratio.

The physical degrees of freedom can be recovered from

the truncated modal transformation

fWg =
mX
r=1

f�rgqr = [�]fqg m � N1 (10)

where N1 is the total number of degrees of freedom.

The modal response, solution to the modal equa-

tions of motion (equations 9), can be determined by

time domain analysis or frequency domain analysis.

In either case, a continuous or discrete approach can
be employed. In this study, analysis is done in the fre-

quency domain through the use of a discrete technique.

This allows complicated frequency distributions to be

handled in a straightforward manner.

Discrete Spectral Analysis

A discrete spectral analysis approach was chosen

since continuous approaches are limited to rather sim-

ple loading cases, which are not very realistic for prac-

tical applications and not easily generated in an ex-
perimental situation. In practice, there is always a

�nite amount of data. Thus, one would employ a Fi-

nite Fourier Transform to a sampled time history as

seen through a viewing window. Furthermore, for dis-

cretely sampled time data, a Discrete Fourier Trans-
form (DFT) can be used to estimate the Finite Fourier

Transforms, etc. A particularly e�cient means of per-

forming a DFT is known as the Fast Fourier Transform

(FFT). Of greater importance is that most experimen-

tal data is processed via the FFT. Thus, a means of
using experimentally measured data has obvious ben-

e�cial implications.

Panel Response

A discrete spectral analysis can be employed by

assuming that the modal force vector, and thus the

modal response, can be written as the sum of harmonic

functions:

ff(t)g =
N2�1X
n=0

ff̂nge
i!nt (11)
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and

fq(t)g =

N2�1X
n=0

fq̂nge
i!nt (12)

where N2 is the number of discrete frequencies in the

transformation and ff̂ng and fq̂ng are the complex

spectrum amplitudes vectors, one for each frequency18.

Substitution into the modal equations of motion, equa-

tion 9, gives

N2�1X
n=0

(�!2
ndIc + i!nd2�r!rc

+ d!2
r c)fq̂nge

i!nt =

N2�1X
n=0

ff̂nge
i!nt

(13)

Therefore, for any one of the discrete frequencies !n
the relation becomes

�
d�!2

nc+ di2�r!r!nc + d!2
rc
�
fq̂ng = ff̂ng (14)

The modal forcing vector is related to the acoustic

excitation load vector from the system diagonalization,

equation 9:

ff(t)g = [�]
T
fP (t)g or ff̂ng = [�]

T
fP̂ng (15)

Furthermore, the nonzero elements of that vector re-

sult from fPb(t)g. The incident pressure is assumed to

consist of obliquely incident plane waves, so the inci-

dent pressure spectral amplitude vector for an element

at a given frequency can be derived from equation 4

and becomes

fP̂nge =

Z

Ae

2p̂nfFw(�; �)ge
�i!n

(��+��)
c dAe

= f�gep̂n

(16)

where f�ge contains the integrated element spatial

description of the incident acoustic pressure, p̂n is

a spectral amplitude of the acoustic pressure, � =

sin �i cos�i, and � = sin �i sin�i, see �gure 1. There-

fore, assembly of the element contributions from equa-

tion 16 results in

ff̂ng = [�]
T
f�gp̂n (17)

The relation in equation 14 is simply a set of uncou-

pled algebraic equations for the modal displacement

spectral amplitudes. Thus, the modal displacement

spectral amplitude vector becomes

fq̂ng = dH(!n)cff̂ng

= dH(!n)c[�]
Tf�gp̂n

(18)

where the dH(!n)c is a diagonal matrix of frequency

response functions given by

Hr(!n) =
1

!2
r � !2

n + i2�r!r!n
(19)

Note that from equation 12, the displacement, velocity,

and acceleration time responses can be computed by

an inverse FFT, assuming that the phase information

has been preserved, from

fq(t)g =

N2�1X
n=0

fq̂nge
i!nt

f _q(t)g =

N2�1X
n=0

i!nfq̂nge
i!nt

f�q(t)g =

N2�1X
n=0

�!2
nfq̂nge

i!nt

(20)

If the excitation is deterministic, the panel dynamic

response solution is complete. However, for stochastic

excitation, a statistical approach must be used. Ad-

ditionally, panel response cross-correlation quantities

are of interest for the acoustic radiation discussion to

follow in the next section. Therefore, the necessary

relations for stochastic panel response are developed

subsequently.

The modal displacement response correlation ma-

trix can be formed from equation 12 as

[Rqq(t1; t2)] = E
h
fq(t1)gfq(t2)g

T
i

=

N2�1X
m=0

N2�1X
n=0

E
h
fq̂�mgfq̂ng

T
i
ei(!nt2�!mt1)

(21)

Substituting from equations 16 and 18 gives

[Rqq(t1; t2)] =

N2�1X
m=0

N2�1X
n=0

dH(�!m)c[�]
T
f�gE[p̂�mp̂n]

f�g
T
[�]dH(!n)ce

i(!nt2�!mt1)

(22)

Note that if the incident acoustic pressure is deter-

ministic, the ensemble average indicated by the ex-

pected value in equation 22 is not necessary. If the

incident pressure is stochastic, the necessary ensem-

ble averages can be performed ahead of time. For a

stationary process, the expected value takes a special

form19

E[p̂�mp̂n] = E[p̂�mp̂n]�mn (23)

Then the stationary modal displacement correlation

matrix results

[Rqq(� )] =

N2�1X
n=0

E[fq̂�ngfq̂ng
T
]ei!n� (24)
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The stationary modal velocity and acceleration corre-

lation matrices follow

[R _q _q(� )] =

N2�1X
n=0

!2
nE[fq̂�ngfq̂ng

T
]ei!n�

[R�q�q(� )] =

N2�1X
n=0

!4
nE[fq̂�ngfq̂ng

T
]ei!n�

(25)

The correlation matrices with a time lag of zero

(� = 0, so that the diagonal elements are mean square

values) can be determined from the modal response

power spectrum. An alternative method, which is an-

alytically consistent (so as to avoid normalization fac-

tors) involves performing an inverse FFT based upon

the above equations. Then the zero time lag corre-

lation matrices correspond to the �rst element of the

inverse transforms. Finally, the stationary response

correlation matrices of the physical degrees of freedom

result from the modal expansion, equation 10.

Acoustic Radiation

The transmitted acoustic pressure radiated by

the panel to a point (x; y; z) in the acoustic free-�eld

can be related to the dynamic response of the panel

through the use of Rayleigh's integral in the form20

pt(x; y; z; t) =
�

2�

Z

A

1

r
�w
�
�; �; t�

r

c

�
dA (26)

where � is the 
uid density, �w is the out-of-plane ac-

celeration response of the panel, � and � are spatial

coordinates in the plane of the panel, r is the distance

from (�; �) on the panel to (x; y; z) in the acoustic �eld,

c is the acoustic wave speed, and t� r
c
is the retarded

time between the two points. Since the physical de-

grees of freedom are known on an elemental basis

w(e)(�; �; t) � fFw(�; �)g
T

(e)fW (t)g(e) (27)

the area integral in the expression for the transmitted

pressure, equation 26, is taken to be the sum of element

area integrals:

pt(x; y; z; t) =
�

2�

nelX
k=1

Z

Ak

1

r
fFw(�; �)g

T

k

n
�W
�
t�

r

c

�o
k
dAk

(28)

As before, a discrete spectral analysis can be employed

to write

n
W
�
t�

r

c

�o
=

N2�1X
n=0

fŴnge
i!n(t� r

c ) (29)

and

pt(x; y; z; t) =

N2�1X
n=0

p̂n(x; y; z)e
i!nt (30)

As in the panel response section, if the excitation is

deterministic, an expression for the radiated pressure

spectral amplitude could be developed and used in

an inverse FFT to determine the radiated pressure

time response. However, for stochastic excitation, a

statistical approach must be used.

Substitution of equation 29 into equation 28 re-

sults in the following expression for the transmitted

pressure

pt(x; y; z; t) = �
�

2�

nelX
k=1

Z

Ak

1

r
fFw(�; �)g

T

k

N2�1X
n=0

!2
nfŴngke

i!n(t�r
c ) dAk

(31)

The transmitted acoustic pressure cross-correlation

function follows as

Rpp(~x1; t1; ~x2; t2) =
� �

2�

�2 nelX
k=1

nelX
l=1

Z

Ak

Z

A0

l

1

r1r2

fFw(�; �)g
T

k

N2�1X
m=0

N2�1X
n=0

!2
m!

2
nE[fŴ �

mgkfŴng
T
l ]

e�i!m(t1�
r1
c )ei!n(t2�

r2
c )fFw(�

0; �0)gl dAk dA
0

l

(32)

where r1 is the distance from (�; �) on the panel to

~x1 = (x1; y1; z1) in the acoustic �eld and r2 is the

distance from (�0; �0) on the panel to ~x2 = (x2; y2; z2)

in the acoustic �eld. Recall that the expected value
of the spectral amplitudes takes a simpli�ed form for

stationary response:

E[fŴ �

mgkfŴng
T
l ] = E[fŴ �

mgkfŴng
T
l ]�mn (33)

Then the stationary cross-correlation function results

Rpp(~x1; t1; ~x2; t2) ! Rpp(~x1; ~x2; � ), which can be fur-

ther simpli�ed for zero time lag (� = 0, not to be

confused with zero retarded time lag). Thus, the

mean square transmitted acoustic pressure at a point
(x; y; z) becomes

p2t (x; y; z) =
� �

2�

�2 nelX
k=1

nelX
l=1

Z
Ak

Z
A0

l

1

r1r
0

1

fFw(�; �)g
T
k

N2�1X
n=0

!4
nE[fŴ �

ngkfŴng
T
l ]e

i!n

�
r1�r

0

1
c

�

fFw(�
0; �0)gldAkdA

0

l

(34)

5
American Institute of Aeronautics and Astronautics



where r1 and r01 are distances from the same point
(x; y; z) in the acoustic �eld to di�erent points on the

panel, and (r1 � r01)=c is the retarded time di�erence.

The element area integrals can be conveniently evalu-

ated via Gauss-Legendre numerical integration, which

precludes the necessity for far-�eld approximations.
However, in the discussions to follow, it will be useful

to introduce acoustic far-�eld assumptions for acoustic

intensity calculations. These assumptions entail mak-

ing the approximations1

1

r1
�

1

R

1

r01
�

1

R
(35)

and

ei!
�
r1�r

0

1
c

�
� ei!

(�0��)K+(�0��)�
c (36)

where K = sin � cos � and � = sin � sin�, see �gure 2.

Thus, the mean square transmitted acoustic pressure

can be written for the far-�eld as

p2t (R; �; �) =
� �

2�R

�2 nelX
k=1

nelX
l=1

Z
Ak

Z
A0

l

fFw(�; �)g
T

k

N2�1X
n=0

!4
nE[fŴ �

ngkfŴng
T
l ]e

i!n
(�0��)K+(�0��)�

c

fFw(�
0; �0)gl dAk dA

0

l

(37)

Note that the interpolation functions Fw are usually

known in terms of element local coordinates. There-

fore, the complex exponential function in the integrand
of equation 37 must be separated into two components:

one which is constant for each element index pair (k; l);

the other must be included in the integration over

the element areas in local coordinates. The area in-

tegrations can be performed numerically, via Gauss-
Legendre numerical integration, but signi�cant reduc-

tions in computational time can be realized by per-

forming the integrations in closed form. Other acous-

tic quantities, such as the acoustic intensity and total

radiated power, can be related to this mean square
pressure in equation 37.

The acoustic intensity at a point is equal to the

time average of the product of the perturbed pressure

and velocity. For a pressure and velocity that are ran-
dom processes, this temporal average must be taken

in the limit as the period T ! 1:

I(x; y; z) = hp(x; y; z; t)~u(x; y; z; t)i

= lim
T!1

1

T

TZ
0

p(x; y; z; t)~u(x; y; z; t) dt

(38)

where ~u(x; y; z; t) is the acoustic velocity. Assuming
that the processes are ergodic in correlation, this tem-

poral average may be replaced by an expected value

I(x; y; z) = hp(x; y; z; t)~u(x; y; z; t)i

= E[p(x; y; z; t)~u(x; y; z; t)]
(39)

In general, the relationship between the acoustic pres-
sure and velocity is not known. However, in the far-

�eld, the radial velocity is dominant and the propagat-

ing waves appear planar. Consequently, the relation-

ship between the acoustic pressure and velocity can

be approximated by20,21

~u(R; �; �; t) � ur(R; �; �; t) =
p(R; �; �; t)

�c
(40)

where the spatial description has been changed to

spherical coordinates for consistency with equation

37. Thus, the far-�eld transmitted acoustic intensity

becomes

It(R; �; �) =
1

�c
E
�
p2t (R; �; �; t)

�
=

p2t
�c

(41)

where the mean square pressure has the form given in

equation 37.

The acoustic power incident upon a surface is

de�ned as the integral of the normal acoustic intensity

over the surface:

�s =

Z
S

I(R; �; �) � n̂ dS (42)

where n̂ is the surface unit normal. Therefore, the

total acoustic power transmitted by the plate can be

calculated by integrating the acoustic intensity over a
far-�eld hemisphere as follows.

�t =

2�Z
�=0

�=2Z
�=0

It(R; �; �) R
2 sin � d� d� (43)

where the transmitted intensity has the form given in

equation 41. This integral must be evaluated numeri-

cally, which can be accomplished via Gauss-Legendre

numerical integration.

Recall that the incident acoustic pressure consists

of obliquely incident plane waves. The incident acous-

tic intensity is then, from the above discussion,

Ii =
p2i
�c

(44)
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and the incident power is simply the normal acoustic
intensity multiplied by the area of the plate:

�i =
p2i ab cos �i

�c
(45)

Finally, the transmission loss (TL) from the incident

to the receiving acoustic �eld is de�ned as

TL = 10 log

�
�i

�t

�
(46)

Results and Discussion

The results presented in this paper were generated

using the following material properties:

Aluminum

E = 68.9 GPa (10 Msi)

G = 25.8 GPa (3.75 Msi)

� = 0.33

� = 2751.4 Kg/m3 (0.2588�10-3 lb-s2/in.4)

Graphite-Epoxy

E1 = 155 GPa (22.5 Msi)

E2 = 8.07 GPa (1.17 Msi)

G12 = 4.55 GPa (0.66 Msi)

�12 = 0.22

� = 1550.07 Kg/m3 (0.1458�10-3 lb-s2/in.4)

�1 = -0.07�10-6/�C (-0.04�10-6/�F)

�2 = 30.1�10-6/�C (16.7�10-6/�F)

SMA (Nitinol)

Ts = 37.78 �C (100 �F)

Tf = 62.78 (145)

E From Fig. 9 of Ref. 3

�r
* From Fig. 8 of Ref. 3

G = 24.86 MPa (3.604 Msi) for T < Ts

= 25.6 MPa (3.712 Msi) for T > Tf

� = 0.3

� = 6450 Kg/m3 (0.6067�10-3 lb-s2/in.4)

� = 10.26�10-6/�C (5.7�10-6/�F)

A simply supported aluminumpanel (15�6�0.032

in.) was analyzed for comparison to results presented

by Roussos1. A comparison of the transmission loss

(TL) predicted using each method for an incident

plane wave at �i=60
� and �i=0

� is shown in �gure 3.

It can be seen that the present method agrees very well

with the classical approach for excitation frequencies

up to 2 kHz. The deviation above 2 kHz is attributable

to the modal resolution of the �nite element model (el-

ement size 1.07�1 in.). The radiation predictions are

only accurate to within the ability of the �nite ele-

ment model to capture the panel vibration response,

as is the case with any other approach.

Transmission loss curves were also generated

for simply supported (0,45,-45,90)s composite panels

(15�6�0.032 in.) with and without shape memory

alloy wire reinforcement. The transmission loss as a

function of harmonic excitation frequency is shown in

�gure 4 for two panels at ambient temperature (70�F);

a graphite-epoxy panel without SMA reinforcement,

and a hybrid graphite-epoxy panel with 10% SMA vol-

ume fraction and 5% initial strain in all layers (SMA

inactivated). The shift in the �rst transmission loss

dip at the fundamental frequency, and the moderate

TL increase for most of the frequency range above the

fundamental frequency, is attributable to the increased

mass of the SMA reinforced panel.

The transmission loss for the same hybrid com-

posite panel at 150�F and 300�F (i.e., SMA activated)

is shown in comparison to the panel with inactive SMA

in �gure 5. It can be seen that at the elevated tem-

peratures the increased sti�ness due to tensile inplane

recovery forces has greatly increased the fundamen-

tal frequency, and thus the fundamental-frequency TL

dip. Consequently, there is a signi�cant increase in the

transmission loss at low frequencies (below 100 Hz).

However, at higher frequencies the TL is nearly un-

changed. This is due to the fact that the TL is mass

controlled at high frequencies. The reduction in the

low frequency TL for the hybrid panel at 300�F, rel-

ative to that for the 150�F panel, is caused by coun-

teracting compressive inplane forces from thermal ex-

pansion e�ects.

It appears from the above discussion that there

are two ways of improving the TL for SMA hybrid

composite panels: optimizing the use of the SMA

7
American Institute of Aeronautics and Astronautics



�ber reinforcement for maximum sti�ening e�ect with

minimal mass addition, and reducing the radiation

e�ciency of the low order modes (particularly the

�rst). These observations are in agreement with re-

sults presented by Liang et al.14 and Anders et al.15,

who have initiated e�orts addressing the radiation ef-

�ciency problem. The increased 
exibility of the �nite

element structural basis for the present analysis may

prove bene�cial in future studies aimed at exploring

methods of maximizing the SMA recovery e�ect and

altering the vibration mode shapes so that their radi-

ation e�ciency is reduced.

Conclusions

A method has been developed for predicting the

vibration response and resulting far-�eld acoustic ra-

diation for composite panels subject to elevated tem-

peratures and an obliquely incident acoustic excita-

tion consisting of plane waves of arbitrary temporal

characteristics. The panel was modeled by a �nite el-

ement analysis and the radiated �eld was predicted

using Rayleigh's integral. The approach has the abil-

ity to include other e�ects such as shape memory alloy

�ber reinforcement, large de
ection thermal postbuck-

ling, non-symmetric SMA distribution or lamination,

etc.

Analytical results were generated for an aluminum

panel subject to harmonic acoustic excitation and

compared with a classical analysis for validation of

the approach. The two approaches agreed very well.

Results were also presented for graphite-epoxy panels

with and without shape memory alloy �ber reinforce-

ment. It was found that the main e�ect of shape mem-

ory alloy reinforcement on the radiated acoustic power

is a shift in the �rst transmission loss dip, due to a shift

in the panel fundamental frequency. It was observed

that further improvements in the panel transmission

loss could be realized with more e�ective use of the

SMA reinforcement to maximize the fundamental fre-

quency shift and reduce the radiation e�ciency of the

fundamental mode.
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Figure 1: Geometry on incident side of panel (after

Roussos1).
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Figure 2: Geometry on radiating side of panel (after

Roussos1).
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Figure 3: Transmission loss for a 15�6�0.032 in. alu-

minum panel with �i=60
� and �i=0
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Figure 4: Transmission loss for a 15�6�0.032 in.

(0/45/-45/90)s composite panel with �i=60
� and

�i=0
�.
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Figure 5: Transmission loss for a 15�6�0.032 in.

(0/45/-45/90)s composite panel with �i=60
� and

�i=0
�.
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